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ABSTRACT 

This paper presents a method to determine the confidence intervals of many simulation performance measures based on a 
single simulation. The confidence intervals of independent variables can be calculated directly. The confidence interval of 
performance functions of means can be calculated using the delta method, as for example for utilizations, frequencies, and throughputs. 
This allows the measurement of the accuracy of the utilizations, frequencies and throughputs using only a single simulation by using 
the variation of the underlying means of the performance function. The presented method is highly accurate, fast, and easy to apply. In 
addition, the method can also be used for short simulations or rare event applications, where methods based on batch means fail. 
Furthermore, this method can easily be implemented into existing simulation software. 

1 INTRODUCTION 
Discrete event simulation is a powerful tool to predict the behaviour of complex systems. However, the accuracy of the results 

depends on many factors, as for example the level of modelling detail of the simulation, the number and magnitude of random effects, 
and the simulation length. This paper concentrates on the difference between the average results of a finite simulation and the true 
average results of a theoretical infinite simulation.  

While for simple queuing systems the true results can be predicted theoretically, this is very difficult for more complex 
simulations, and practically every simulation has some small errors between the simulation results and the true average results. 
Confidence intervals are used to measure the accuracy of the possible true mean values of randomly data. The standard equations for 
the calculation of confidence intervals, however, require independent and identically distributed data (i.i.d). While simulation data is 
frequently not independent, there are many performance measures in simulation that are indeed independent. This paper shows, that 
the results of simulations are frequently independent and, if so, the standard deviation and the confidence interval can be calculated 
using standard equations. 

Additionally, many performance measures in discrete event simulation are a function of one or more means. For example, the 
throughput is the inverse of the mean time between completions of two parts, or the utilization is the mean work time divided by the 
mean time between the completions of two parts. While this allows the calculation of the mean throughput or utilization, it gives only 
one mean value, which is insufficient to calculate a variance, which in turn is necessary to calculate a confidence interval.  

This paper applies the delta method to determine the variance of the function of the means of one or more variable (Henderson 
2000), (Oliveira, Santana, and Lopes 1997). This method is a valuable alternative to other currently existing methods to estimate the 
variance and confidence intervals of simulations and other non-independent data, as for example batching (Alexopoulos, and Seila 
2000), (Law, and Kelton 1991), (Banks 1998). 

2 INDEPENDENCE OF DATA 
A single simulation can produce large amounts of data. Some of this data is heavily dependent, i.e. the value at one simulation 

step depends on the value of the previous simulation step. A prime example are queues, where a long waiting time for one part is most 
likely followed by a long waiting time of the next part. Currently, dependent data cannot be analysed directly but requires the 
construction of independent batch means in order to estimate the variance and the confidence intervals. However, other simulation 
data is quite independent. For example, the time to process one part at one machine is in most simulations described by an independent 
random variable, hence the resulting data is also independent. The variance of independent data can easily be analysed using the 
standard equation as shown in equation (1), where σ is the standard deviation if a data set x with n elements and a mean of x . 
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 (Neumann 1941; Neumann 1942) developed a measure to determine if sequential data is dependent or independent, known as 
the von Neumann ratio or the ratio of the mean squared successive difference to the variation η (RMSSDV). Equation (2) shows the 
calculation of the RMSSDV η based on a set of data x, where the mean squared difference between successive data is divided by the 
variance of the data. 
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If the data x is independent and normally distributed, then the RMSSDV will also be normally distributed with a mean of two 
and a standard deviation of 4(n-2)/(n2-1). Unfortunately, in simulations the data is usually not normally distributed. However, in this 
case independent data still has a mean value of two. Thus this method can be used to determine if the collected data is independent (i.e. 
with a mean value at or near two) or not (i.e. the mean differs from two). Variants of equation (2) can be found in (Kleijnen 1987) or 
(Steiger, and Wilson 1999). Two examples will be used to show the frequent occurrence of independent variables in simulation 
systems. The first example is a simple one machine queuing system. The second example is a complex simulation involving seven 
machines and two different part types.  

2.1 Queuing system example 
The queuing system consists of only one machine, which is at any given time in either of two possible states, idle and working. 

In the simulation, the idle time and the working time are randomly distributed. As expected, queue related performance measures as 
for example the waiting time or the queue length were heavily dependent. However, performance measures related to the machine 
performance were very independent. Table 1 shows an example of a one machine queuing system with a utilization of 80%. The 
RMSSDV has been determined for both the duration and the time between the beginning of a duration for the working and idle times. 
The working times are very independent, as is the time between the beginnings of the idle periods. Only the idle periods itself are 
slightly dependent, but fortunately, this measure is rarely needed in practice. 

Table 1: RMSSDV of one machine queuing system 

Measure Number of 
Events 

RMSSDV 

Duration Time between Occurrences 

Working 79972 2.01 1.96 
Idle 16036 2.57 1.98 

 

2.2 Complex production system example 
The presented method was also verified using a complex simulation example, consisting of seven machines in a complex 

setting and a mixture of two different products. The simulation was performed using the GAROPS simulation software as shown in 
Figure 1 (Kubota, Sato, and Nakano 1999), (Nakano et al. 1994).  
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Figure 1: GAROPS simulation example 

The independence of the resulting simulation data was measured using the von Neumann ratio as shown in equation (2). As 
expected, measures related to the queue performance were heavily dependent. However, despite the complex interactions of the 
system, most machine performance measures were independent. In fact, out of 46 measured parameters as for example the working 
times or the time between failures, all but four were approximately independent with a RMSSDV between 1.7 and 2.2 as shown in 
Table 2. This allows the calculation of a valid standard deviation and a confidence interval for these values as described in more detail 
below.  
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Table 2: RMSSDV of complex simulation 

Measure Number 
of 
Events 

RMSSDV 

 Duration 
Time between 
Occurrences 

M1 Working 49049 2.0 2.0 

M1 Blocked 49050 2.0 2.0 

M2 Working 49049 2.0 2.0 

M2 Blocked 14261 1.8 2.0 

M2 Repair 1043 2.0 2.0 

M3 Working 16349 2.0 1.8 

M3 Idle 6151 1.7 1.8 

M3 Blocked 319 6.1 2.1 

M3 Repair 1196 2.1 2.0 

M4 Working 16349 2.0 1.8 

M4 Idle 16061 1.8 1.8 

M4 Blocked 8 Insufficient Data 

M4 Repair 494 4.6 2.1 

M5 Working 3037 1.7 1.7 

M5 Idle 50 2332.1 2.1 

M5 Blocked 1721 3.7 2.1 

M5 Repair 1291 2.1 2.0 

M6 Working 49046 2.0 1.9 

M6 Idle 11934 1.8 2.0 

M6 Blocked 48205 2.0 1.9 

M6 Repair 893 1.9 2.1 

M7 Working 49046 2.0 1.9 

M7 Idle 12755 1.7 1.7 

M7 Repair 1172 1.9 2.0 
 

3 DELTA METHOD CONFIDENCE INTERVALS 
The variance and the confidence interval of simulation data can be easily constructed if numerous independent data values are 

available as shown in equation (1). Unfortunately, other performance measures can be measured only once per simulation, as for 
example the throughput q (i.e. the number of parts produced divided by the total time) or the utilization u (i.e. the total working time 
divided by the total time). Subsequently, no variance can be determined and no confidence interval can be constructed.  

However, it is possible to express the throughput q or the utilization u as a function of random variables that can be measured 
repeatedly in the simulation. For example the throughput q is the inverse of the mean time between parts, and the utilization u is the 
mean working time divided by the mean time between parts as shown in equation (3). 
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This has the benefit that the variation of the working time and the variation of the time between parts can be used to calculate 
the variation of the throughput q and the utilization u using the delta method (Rinne 1997). The delta method determines the variance 
of a general performance function of one or more mean values based on the gradient of the performance function using a Taylor series 
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expansion. Assume there is a general performance measure z as a function f of the mean value of one variables μx as shown in 
equation (4). 

  xfz   (4) 

Yet, if the mean values μx are applied to the function f, only one performance measure z is generated. The variation of the 
performance measure y and subsequently the confidence interval is yet unknown. While it is possible to enter the individual values xi 
into the equation f, the resulting mean and variation of the performance measure y would be incorrect for all non-linear functions, i.e. 
the function of the mean would differ from the expected value of the function of the individual data values. Only if the function f is 
linear will the function of the means and the mean of the function be equal (Papoulis 1991).  

This leads naturally to the idea to replace the function f by its tangent f* at the mean value μx. Using this tangent f*, it is possible 
to determine the standard σz of the function f of the mean μx based on the standard deviation σx.  Figure 2 visualizes the throughput 
example for a tangential line f* replacing the function f. 
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Figure 2: Function replaced by Tangent at the Mean Value 

The delta method calculates the deviation σz of the function fz=(μx, μy) of one or more mean values μx and μy. Equation (5) 
shows the use of the Delta method for a function of two variables with respect to the covariance between the two variables x and y 
(Papoulis 1991). This approach is used for example by (Freedman 2001; Moore, and Sa 1999). The equation can be simplified if 
needed for example if there is no covariance or if only one variable is used. 
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The unbiased estimate of the covariance Cov[x,y] between two paired variables x and y can be measured as shown in Equation 
(6). 
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The resulting standard deviation σz can now be used to calculate a confidence interval as shown in Equation (7) using the 
student t distribution from William Gosset (Student 1908). The confidence interval CIZ can be calculated from a set of data of size n 
with a variation σz for a confidence level of 1-α/2. 

n
tCI z

nz


   2/,1  (7) 

The validation of standard deviations of functions of means is difficult, as no exact reference method exists to which the results 
could be compared to. Therefore, this paper validates the confidence interval of the performance functions of the mean. Per definition, 
out of an infinite number of confidence intervals, the percentage of the confidence intervals containing the true value equals the 
confidence level (Devore 1995). Subsequently, testing the validity of a confidence interval method requires comparing a large number 
of confidence intervals with the true value. The percentage of the confidence intervals containing the true value has to be 
approximately equal to the confidence level 1-α/2 of the confidence intervals.  This validation approach is applied to the two examples 
described above. 

3.1 Queuing system example 
The queuing system consists of only one machine, as described above. Simple queuing systems have the advantages that the 

true value of the system performances are known based on the random distributions of the system parameters.  To test the method, the 
validity of the confidence intervals of these queuing systems were tested by calculating 1000 confidence intervals for each setting and 
comparing the confidence intervals with the true value. 

The method has been thoroughly verified for a wide range of possible settings. One varied factor was the confidence level, 
were the method was tested for frequently used confidence levels of 90%, 95% and 99%, but also for less common confidence levels 
of 30%, 50% and 75%. The random distributions of the idle time and the working time included exponential distributions, two 
additional different types of lognormal distributions, and a Weibull distribution.  The system was tested for different machine 
utilizations of 10%, 30%, 50%, 70%, and 95%. Various sample sizes tested the dependence of the algorithm on the sample size. In 
addition, the system was tested in different identical, but scaled versions, where the scaling factors were 10, 100, and 1000. Finally, 
the relation between the idle time and the working time was set to be either uncorrelated (idle time independent of working time), 
positively correlated (long working time causes long idle time and vice versa), or negatively correlated (long working time causes 
short idle time and vice versa). The true values of the simulation can easily be determined for uncorrelated data using queuing theory. 
For correlated data, the true value was approximated using very large samples. 

All of the above possible system settings have been tested, including a large number of combinations. Altogether about 600 
different experiments have been tested, each including about 1000 confidence intervals, creating a total of 600,000 simulations of 
queuing systems performed for validation purposes. The overall results are shown in Table 3 for the frequencies confidence interval 
and in Table 4 for the percentage confidence interval. The shown actual coverage is the percentage of confidence intervals containing 
the true value, where each row of the tables is the result of 100,000 confidence intervals. As can be seen, the actual coverage is always 
very close to the desired coverage, indicating a very good prediction of the presented method. 

Table 3: Accuracy of the frequency confidence interval 

Desired Coverage Actual Coverage Coverage Deviation   Too Small Too Large 
99% 98.4% 0.9% 1.0% 0.7% 
95% 94.1% 1.4% 3.3% 2.6% 
90% 88.6% 2.1% 6.4% 5.0% 
75% 73.3% 2.7% 14.5% 12.2% 
50% 48.9% 1.9% 27.5% 23.6% 
30% 29.2% 1.4% 37.5% 33.3% 
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Table 4: Accuracy of the percentage confidence interval 

Desired Coverage Actual Coverage Coverage Deviation   Too Small Too Large 
99% 98.3% 0.8% 1.0% 0.7% 
95% 93.9% 1.5% 3.2% 3.0% 
90% 88.7% 1.8% 5.8% 5.5% 
75% 73.5% 2.6% 13.2% 13.3% 
50% 48.2% 2.1% 25.6% 26.2% 
30% 29.1% 1.8% 34.8% 36.0% 

 
 
The tables also shows the percentage of the simulations with the true value above the confidence interval is approximately 

equal to the number of cases with the true value below the confidence interval. This indicates a symmetric behaviour and a good fit of 
the confidence interval. Subsequently, the presented method produces valid and highly accurate confidence intervals for the queuing 
system. 

3.2 Complex manufacturing system example  
The presented method was also verified using the complex simulation example as described above. The total simulation time of 

almost two years was split into 101 subsets with a simulation time of 6 days each. For each subset, the frequencies and the percentages 
of all machines working, idle, blocked or repaired were measured and the 95% confidence intervals calculated if the underlying data 
was independent. In total, for all machines, 6219 individual confidence intervals were calculated for frequencies and also for 
percentages.  

These confidence intervals were then compared to the overall averages, which are very close to the unknown true value. Ideally, 
for confidence intervals with a confidence level of 95%, 95% of the confidence intervals contain the true value, i.e. the desired 
coverage is 95%. The closer the actual coverage is to the desired coverage, the more accurate is the confidence interval method.  Table 
5 shows an overview of the coverage results of the complex simulation.  

Table 5: Coverage of the simulation example 

Performance Measure Desired Coverage Actual Coverage   Too Small Too Large 
Frequency 95% 94.44% 2.86% 2.70% 
Percentage 95% 92.86% 4.33% 2.81% 

 
 
Out of the 6219 confidence intervals of frequencies with a desired coverage of 95%, the actual coverage was 94.44%. The 

instances where the long-term average was outside of the confidence interval were also symmetrically distributed with 2.8% under 
prediction and 2.7% over prediction. This indicates a very good overall fit.  

Out of the 6219 confidence intervals of percentages with a desired coverage of 95%, the actual coverage was 92.86%. The 
instances where the long-term average was outside of the confidence interval contained 4.3% under prediction and 2.8% over 
prediction. Overall, the actual coverage is almost identical with the desired coverage. Furthermore, the actual coverage is also nicely 
centred, with the number of over and under predictions being almost equal. Subsequently, the confidence interval method calculation 
based on the delta method performs very well in the actual complex simulation.  

Figure 3 shows the comparison of the confidence interval coverage of the delta method and the batching method. To verify the 
batching method, the confidence intervals of the frequencies and percentages have been obtained from 100 simulations, using a fixed 
number of 30 batches with independent batch means. A total of 2180 confidence intervals for both the frequencies and percentages 
have been evaluated, of which only 498 and 1503 confidence intervals contained the true mean value. Therefore the batch means 
method had a coverage of only 22.8% and 68.8% for the frequencies and throughputs respectively, missing the desired coverage of 95 
by a wide margin. For the demonstrated example, the batching method is clearly inferior to the delta method for independent data.  
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Figure 3: Batching vs. Delta method accuracy 

4 CONCLUSION 
This paper described how to measure the independence using the von Neumann RMSSDV, and how to calculate confidence 

intervals of functions of mean values using the delta method. Both, the frequent availability of independent data in simulations and the 
accuracy of the resulting confidence intervals have been demonstrated using different examples. The delta method is clearly superior 
to the batching method if independent data is available. More complex and imprecise methods as for example batching have to be used 
only if the resulting data is not independent. For independent data however, the confidence interval can be calculated directly. This 
also allows the calculation of related confidence intervals as for example the utilization or the throughput. The method provides 
extremely accurate results for independent and identically distributed data, as it was tested for a large number of different queuing 
system conditions. Additional tests with complex simulations also created highly accurate results for independent data. In addition to 
the accuracy, the method has a large number of benefits. 

Compared to batching, the delta method is very fast to calculate the confidence interval, as it is not necessary to calculate 
different batch sizes and perform complex statistical tests. Furthermore, the method works also with small sets of data. While for 
batching, each batch has to satisfy certain statistical requirements and subsequently has a minimum size; the presented method 
requires only one set of data, allowing the calculation of a confidence interval at a much earlier stage during the simulation. This is 
extremely useful for example to analyse rare events, where even a long simulation does not have many events of interest, and 
subsequently batch means methods cannot be applied. 

In summary, the method provides a preferable alternative for approximately independent data to calculate the function of one 
or more means, as for example frequencies or percentages. Therefore batching methods should only be used if the data required for the 
performance measure is not independent. 
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