Mixed Model Sequencing – Basic Example Workload and Buffering

Adjusting the production sequence is a popular way of handling production lines with a product-dependent workload. This post is part of rather long series on Mixed Model Sequencing. In the last post I discussed the basics of sequencing and the calculation of the takt time. This post describes the basics of adjusting workload and buffering – but still for a simple case of only one imbalanced station. Subsequent posts will get more serious with multiple imbalances. But let’s continue with our simple single imbalance example.

Read more

Mixed Model Sequencing – Basic Example Introduction

Your products may have different work content on your production line, which may make your line less efficient. One possible solution is Mixed Model Sequencing, a way to adjust the sequencing of your products to make the average work content stable. In previous posts I looked at the basics, at how to avoid the problem in the first place and how to play with capacity. However, especially for large complex lines (i.e., automotive), sequencing is often a suitable approach to manage different work contents.

Read more

Mixed Model Sequencing – Adjust Capacity

Production lines with a product mix may have different workloads at different stations for different products. This can cause waste. In this third post in the series I will look at options on how to adjust the available capacity to ease this problem. In my next post I will look at Mixed Model Sequencing to adjust workload differences.

Read more

Mixed Model Sequencing – Just Make the Problem Go Away

Your production line may have different workloads for different product variants. This unevenness causes waste and overburden. In this series of posts I will look at ways to address this unevenness. The first post was an introduction to the topic. This second post will look at ways to simply eliminate the problem – although this may not be feasible for many cases. In the next posts I will look at adjusting the capacity and finally at adjusting the product sequence through Mixed Model Sequencing.

Read more

Mixed Model Sequencing – Introduction

In a mixed model production line, different products may have different work content at different stations. Hence, some stations may need a longer or shorter time depending on the product. This requires careful planning of the assembly line. If this is not taken into account, it may cause significant idle time with all stations along the line. This is the first of a (very) long series of posts looking at Mixed Model Sequencing (i.e., the behavior of unbalanced workloads, and different ways to address these issues).

Read more

Point-of-Use Provider Routing

Ice Cream Sundae order
Just what you need …

This is my last post of a series of three posts on point-of-use providers (also known as mizusumashi, water strider, or water spider). In this post I will go into much more detail on the routing of the point-of-use provider. A less-busy point-of-use provider can handle multiple lines. Similarly, very busy lines may have multiple point-of-use providers. Here I will show you some more details on these possibilities.

Read more

Point-of-Use Provider Calculations

In this second post of my series on point-of-use providers (also known as Mizusumashi, water strider, or water spider), I will discuss the calculation of the workload for the point-of-use provider … although calculation is a way-too-big word for what is, in practice, guesswork with limited data of low quality. However, I hope it helps you with planning your point-of-use providers.

Read more

Cookie Consent with Real Cookie Banner